Exploring the efficient antimicrobial applications of a novel supramolecular Hg(ii)-metallogel derived from succinic acid acting as a low molecular weight gelator
Abstract
A novel supramolecular metallogel, termed Hg-SA, was synthesized using succinic acid (SA) as a low molecular weight gelator in a DMF solvent under standard conditions. The mechanical properties of the Hg-SA metallogel were evaluated through rheological tests, specifically focusing on the angular frequency and strain sweep measurements. Field emission scanning electron microscopy (FESEM) results revealed the rod-like network structure of Hg-SA, while energy dispersive X-ray (EDX) elemental mapping confirmed its composition. Fourier transform infrared (FT-IR) spectroscopy provided insights into the formation mechanism of the synthesized Hg-SA metallogel. The antimicrobial activity of the metallogel was tested against Gram-positive bacteria Bacillus subtilis and Staphylococcus epidermidis as well as Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, revealing its significant antibacterial potency. Thus, this study highlights the antimicrobial effects of Hg(II)-based succinic acid-mediated metallogels against Gram-positive and Gram-negative bacteria.