Issue 6, 2025

Chemical degradation as an enabling pathway to polymersome functionalization

Abstract

Readiness and the ability to functionalize are the fundamental features of natural living systems. Understanding the chemical roots of functionalization is a basic quest for the generation of new materials in the laboratory and chemistry-based natural-life-mimicking artificial or synthetic living systems. Using polymerization-induced self-assembly (PISA) and starting from a homogeneous aqueous blend of a few strictly non-biochemical compounds, it is possible to create amphiphiles that can self-boot into submicron supramolecular objects (micelles). These micelles under the control of chemistry can undergo (1) morphological evolution into giant polymersomes and (2) exhibit growth-implosion cycles accompanied by (3) vesicle self-reproduction and population growth. We call the physico-chemical processes underlying these life-like systems “Phoenix dynamics”. Herein, we studied how the emergence of such functions in these systems can occur owing to the combination of the chemical degradation of the macro chain transfer agents involved in the PISA process due to the presence of oxygen and its impact on the physico-chemical evolution of these objects. Results indicated implications for the controllable degradation-triggered functionalization of self-booted synthetic supramolecular self-assembling systems and provided a physicochemical pathway to implement novel functionalities in supramolecular systems. Functionalization of polymersomes is of interest in many areas of science and technology, including biomedical and environmental applications and origins of life studies.

Graphical abstract: Chemical degradation as an enabling pathway to polymersome functionalization

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2024
Accepted
21 Jan 2025
First published
12 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 4693-4700

Chemical degradation as an enabling pathway to polymersome functionalization

C. Lin, K. Siddharth and J. Pérez-Mercader, RSC Adv., 2025, 15, 4693 DOI: 10.1039/D4RA08536A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements