Recyclable and air-stable colloidal manganese nanoparticles catalyzed hydrosilylation of alkenes with tertiary silane†
Abstract
We synthesized N,N-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(II) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn–O bonds. The Mn NPs exhibited high catalytic activity, achieving a turnover number (TON) of 15 800, surpassing previous manganese catalysts in alkene hydrosilylation. Furthermore, the Mn NPs maintained their catalytic activity after the reaction, enabling multiple recycling.

Please wait while we load your content...