Issue 10, 2025, Issue in Progress

Probing high-efficiency Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3-based perovskite solar cells through first principles computations and SCAPS-1D simulation

Abstract

This study presents a high-efficiency perovskite solar cell structure, incorporating a Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 as absorber, PCBM as the electron transport layer (ETL), and CuSbS2 as the hole transport layer (HTL). First-principles calculations were conducted to explore the electronic and optical properties of these materials, revealing a high absorption coefficient of approximately 105 cm−1, making the perovskite an excellent absorber. The SCAPS-1D simulation tool was employed to evaluate the photovoltaic performance of the ITO/PCBM/mixed perovskite/CuSbS2/Ag device. Various factors such as different HTLs and ETLs, absorber thickness, ETL and HTL thickness, defect concentration, temperature, and resistance were analyzed to optimize device performance. The results demonstrate that the optimized configuration achieves an outstanding power conversion efficiency of 28.01%, with an open-circuit voltage of 1.12 V, a short-circuit current density of 29.84 mA cm−2, and a fill factor of 83.78%. Notably, the study found that HTL thickness variations have a more dominant impact on efficiency than perovskite thickness, emphasizing the importance of transport layer engineering. The findings offer a promising pathway for further research on material optimization, stability enhancement, and large-scale fabrication, paving the way for the next generation of perovskite solar technologies.

Graphical abstract: Probing high-efficiency Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3-based perovskite solar cells through first principles computations and SCAPS-1D simulation

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2024
Accepted
22 Feb 2025
First published
07 Mar 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 7342-7353

Probing high-efficiency Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3-based perovskite solar cells through first principles computations and SCAPS-1D simulation

O. Saidani, S. Goumri-Said, A. Yousfi, G. S. Sahoo and M. B. Kanoun, RSC Adv., 2025, 15, 7342 DOI: 10.1039/D4RA08323G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements