Synthesis of mesoporous carbon from banana peels with silica gel 60 as the hard templates†
Abstract
The synthesis of mesoporous carbon was successfully performed through solid–solid phase reaction employing banana peel powder as the carbon source and silica gel 60 (SG-60) as the hard template. The synthesis was initiated by hydrothermal heating to introduce the banana powder to SG-60 surface, followed by the carbonization process to form the mesoporous carbon. FTIR, Raman, XRF, and XRD characterization confirmed the success of the carbonization step, while N2 physisorption and TEM characterization confirmed the mesoporous structure formation of the synthesized carbon with the template. At an optimum carbon-to-silica precursor ratio of 3 : 1, the synthesized carbon with SG-60 templates proceeds to a specific surface area of 476.97 m2 g−1, which is around 55-fold higher than the one synthesized without any template. Furthermore, evaluation of the capacitance performances was done by creating composite electrodes with nickel foam as the support and polyvinylidene difluoride as the binder. The evaluation was carried out using cyclic voltammetry in 3.0 M KOH, galvanic charge–discharge, and electrochemical impedance spectroscopy confirming a high correlation between the specific surface area and the specific capacitance. The banana peels-derived mesoporous carbon demonstrates a specific capacitance value of 23.1 F g−1, measured using the cyclic voltammetry method. Good stability of the prepared electrode over 2500 voltammetric cycles was also demonstrated, indicating that the use of SG-60 as the hard template is suitable for synthesizing carbon with mesoporous structure from biomass.