Issue 9, 2025, Issue in Progress

Achieving high-performance parameters in NASICON-polymer composite electrolyte-based solid-state supercapacitors by interface modification

Abstract

The present study reveals a strategy to enhance the performance of solid-state supercapacitors based on activated carbon electrodes and a Na3Zr2Si2PO12 (NZSP) dispersed fast ionic solid polymer electrolyte membrane. The electrode–electrolyte interface is optimized using a novel ‘solvent layer’ approach to enhance supercapacitor performance. By adding a small amount of acetonitrile organic solvent (a few μL cm−2) at the electrode–electrolyte interface and utilizing high surface area (1800 m2 g−1) activated carbon, significant improvements in specific capacitance, specific energy, specific power, and cycling stability are achieved. Device performance at various operating voltages and discharge currents reveals interesting results. A specific capacitance of approximately 260 F g−1 and a high specific power of 4780 W kg−1 is achieved at 3 V/5 mA. Moreover, after 10 000 galvanostatic charge–discharge cycles (1 V/1 mA), the supercapacitor exhibits ∼99% stable coulombic efficiency along with appreciably high capacitance retention (∼90%). A stack of five such cells can power an 8 V LED circuit for more than 30 minutes. Applying such a solvent layer enables effective use of the surface area of the activated carbon. Results suggest that solvent incorporation enables a local ‘gel-like’ layer formation that couples the electrode with a solid polymer electrolyte and facilitates faster charge movement across the electrode–electrolyte interface.

Graphical abstract: Achieving high-performance parameters in NASICON-polymer composite electrolyte-based solid-state supercapacitors by interface modification

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Nov 2024
Accepted
21 Feb 2025
First published
27 Feb 2025
This article is Open Access
Creative Commons BY license

RSC Adv., 2025,15, 6518-6530

Achieving high-performance parameters in NASICON-polymer composite electrolyte-based solid-state supercapacitors by interface modification

Neha and A. Dalvi, RSC Adv., 2025, 15, 6518 DOI: 10.1039/D4RA08292C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements