Issue 8, 2025, Issue in Progress

Sensitive determination of valganciclovir via Ni–Co multilayer nanowire-modified carbon paste electrode

Abstract

This study presents the development of an electrochemical sensor based on a carbon paste electrode modified with nickel–cobalt multilayer nanowires (Co–Ni(MLNW)/CPE) for the detection of valganciclovir, an antiviral drug. The sensor was fabricated using an electrochemical deposition method, and its electrochemical behavior was investigated through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The influence of pH on the sensor's performance was extensively studied, revealing that the redox reaction of valganciclovir (VGCV) involves proton exchange, making pH optimization crucial. The results demonstrated that the sensor exhibited a wide linear range from 0.1 to 2000 nM, with a low detection limit of 0.03 nM at pH 7, the optimal condition for VGCV detection. Additionally, the sensor showed excellent stability, reproducibility, and selectivity, with negligible interference from common ions and biological molecules. The sensor's applicability was further validated through the determination of VGCV in human plasma samples, achieving a high recovery rate of 97.9%. These findings indicate that the proposed Co–Ni(MLNW)/CPE sensor is a promising tool for the accurate, sensitive, and reliable determination of VGCV in clinical and pharmaceutical settings.

Graphical abstract: Sensitive determination of valganciclovir via Ni–Co multilayer nanowire-modified carbon paste electrode

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
17 Nov 2024
Accepted
14 Feb 2025
First published
20 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 5837-5849

Sensitive determination of valganciclovir via Ni–Co multilayer nanowire-modified carbon paste electrode

M. Malekzadeh, A. A. Rafati and A. Bagheri, RSC Adv., 2025, 15, 5837 DOI: 10.1039/D4RA08155B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements