Issue 5, 2025, Issue in Progress

A free-radical initiator-based carrier-free smart nanobomb for targeted synergistic therapy of hypoxic breast cancer

Abstract

Thermodynamic therapy (TDT) is a promising alternative to photodynamic therapy (PDT) by absorbing heat through thermosensitive agents (TSAs) to generate oxygen-irrelevant highly toxic free radicals. Therefore, TDT can be a perfect partner for photothermal therapy (PTT) to achieve efficient synergistic treatment of anoxic tumors using a single laser, greatly simplifying the treatment process and overcoming hypoxia limitations. However, the issues of how to improve the stability and delivery efficiency of TSAs still need to be addressed urgently. Herein, polyethylene glycol–folic acid (PEG–FA)-modified and indocyanine green (ICG)-encapsulated nanoscale Zn2+ and 2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) coordinated nanomaterials (IANM-PEG-FA) were developed as a nanobomb for targeted photothermal/thermodynamic/ion-interference cancer therapy. Co-triggered by a single 808 nm laser and mildly acidic tumor microenvironment, the photothermal agent of ICG would induce rapid decomposition of AIPH to generate alkyl radicals and release ICG and Zn2+, resulting in effectively cascaded oxygen-independent photothermal/thermodynamic therapy and co-enhanced synergistic intracellular overload of Zn2+ interference. Additionally, PEG–FA enabled favorable stability and active targeting ability to achieve low side effects and efficient tumor enrichment for good photothermal/near-infrared fluorescence imaging-guided precise tumor therapy. Significantly, the IANM-PEG-FA nanosystem exhibited remarkable anticancer effects even at low doses in hypoxic breast cancer, achieving 80% tumor elimination. Our study might provide a highly effective strategy for developing a multifunctional carrier-free nanosystem with high performance in hypoxic cancer to meet the requirements in the clinic.

Graphical abstract: A free-radical initiator-based carrier-free smart nanobomb for targeted synergistic therapy of hypoxic breast cancer

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2024
Accepted
15 Jan 2025
First published
30 Jan 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 3098-3109

A free-radical initiator-based carrier-free smart nanobomb for targeted synergistic therapy of hypoxic breast cancer

L. Hu, G. Dong, X. Li, S. Li and Y. Lv, RSC Adv., 2025, 15, 3098 DOI: 10.1039/D4RA07841A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements