Issue 16, 2025, Issue in Progress

Advanced clay-based geopolymer: influence of structural and material parameters on its performance and applications

Abstract

Clay-based geopolymer material cement is an intriguing alternative to traditional Portland cement when looking for ecologically friendly and sustainable building materials. This material blends cutting-edge geopolymerization technologies with abundantly available clay to produce a variety of advantages, including enhanced mechanical properties and reduced carbon emissions. As the need for green building solutions grows, clay-based geopolymer cement stands out because of its superior structural performance, durability, and resistance to extreme environmental conditions. In this study, we present a complete examination of the curing conditions, structural features, and diverse applications of geopolymers, emphasizing the essential elements that determine their strength and performance. We investigated the effect of curing temperature and duration, demonstrating that favorable curing temperatures (such as 60–80 °C) can increase the strength of geopolymers, whereas excessive curing temperatures can degrade their long-term structural integrity. Pre-curing treatments, such as heat and moisture management, were also investigated for their capacity to improve the microstructural density and minimize the porosity. In addition, we investigated improved curing procedures such as autoclave and steam-saturated methods, which provide higher mechanical qualities, especially in terms of compressive strength. Herein, we discussed a variety of applications, including high-performance composites in aerospace and construction and environmental remediation employing the capacity of geopolymers to immobilize dangerous compounds. Finally, we addressed the promise of geopolymers in future sectors, such as infrastructure repair, environmentally friendly systems, and applications in medicine, emphasizing their long-term viability and versatility in current materials science.

Graphical abstract: Advanced clay-based geopolymer: influence of structural and material parameters on its performance and applications

Article information

Article type
Review Article
Submitted
24 Oct 2024
Accepted
25 Mar 2025
First published
22 Apr 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 12443-12471

Advanced clay-based geopolymer: influence of structural and material parameters on its performance and applications

R. Khan, S. Iqbal, M. Soliyeva, A. Ali and N. Elboughdiri, RSC Adv., 2025, 15, 12443 DOI: 10.1039/D4RA07601J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements