Issue 7, 2025, Issue in Progress

Personalised 3D-printed bioactive peek bone plate scaffold for treating femoral defects

Abstract

Fractures affect millions of individuals worldwide, particularly those with osteoporosis, and often require rigid fixation for proper healing. Although traditional metal bone plates are effective, they are limited by their stiffness and inability to conform precisely to anatomical structures, leading to complications such as stress shielding and delayed healing. In this study, we utilized computer-aided design (CAD) combined with reverse engineering to develop a 3D bone plate scaffold model that perfectly matches the contours of the rabbit femur. Additionally, we employed fused deposition modeling (FDM) 3D printing to fabricate a customized polyetheretherketone (PEEK) bone plate scaffold based on the model, designed to match individual bone structures and reduce rigidity-related issues. To enhance the bioactivity of the PEEK scaffold surface, we applied plasma spraying technology to coat it with bioactive materials, including nanohydroxyapatite (HA), tantalum (Ta), and titanium (Ti). The results showed that the HA coating contained 48.06% calcium (Ca) and 16.47% phosphorus (P) and the Ti coating contained 82.32% Ti. In vitro studies showed that the bioactive scaffold effectively promoted the proliferation and differentiation of osteogenic mesenchymal stem cells, with a cell survival rate greater than 93.86%. Moreover, in vivo results from the rabbit femoral defect model showed that the bioactive scaffolds significantly accelerated bone tissue healing, with HA-coated PEEK scaffolds exhibiting exceptional bone regeneration potential. This study proposes a comprehensive strategy for customizing bone plate scaffolds, which holds significant promise for personalized precision medicine.

Graphical abstract: Personalised 3D-printed bioactive peek bone plate scaffold for treating femoral defects

Supplementary files

Article information

Article type
Paper
Submitted
23 Oct 2024
Accepted
26 Jan 2025
First published
17 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 5060-5072

Personalised 3D-printed bioactive peek bone plate scaffold for treating femoral defects

W. Zhang, D. Shi, S. Huang, S. Li, M. Zeng and Y. Wei, RSC Adv., 2025, 15, 5060 DOI: 10.1039/D4RA07573K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements