Immobilization of soybean peroxidase enzyme on hierarchical zeolite-ordered mesoporous carbon nanocomposite and its activity†
Abstract
Immobilization of enzymes on inorganic supports such as silica and carbon materials is an effective approach for chemical surface modification. In this work, hierarchical zeolite (HZ-SAPO's) materials were fabricated by a modified method, and mesoporous carbon (CMK-3) was synthesized using the SBA-15 mesoporous silica as a template. A variety of biocatalysts was prepared using HZ-SAPO with CMK to furnish the nanocomposite biocatalyst. The functionalization of amine group with APTES was done which was further immobilized by Soybean Peroxidase (SBP) enzyme. The material was subjected to a comprehensive characterization process utilizing numerous systematic methods, including X-ray diffraction, N2 adsorption–desorption isotherms, Raman spectroscopy, scanning electron microscopy, high-resolution transmittance electron microscopy, and attenuated total reflectance Fourier transform infrared spectroscopy. The pH effect on the immobilized enzyme was examined and compared to that of SBP. Further, the assessment of repeated usability of immobilized SBP with successive cycles was carried out.