Issue 1, 2025, Issue in Progress

Hydrophobic dual-polymer–reinforced graphene composite aerogel for efficient water–oil separation

Abstract

Addressing the environmental challenges posed by oil spills and industrial wastewater is critical for sustainable development. Graphene aerogels demonstrate significant potential as highly efficient adsorbents due to their high specific surface area, excellent structural tunability and outstanding chemical stability. Among available fabrication methods, the hydrothermal self-assembly technique stands out for its low cost, high tunability and good scalability. However, brittleness caused by stacking and agglomeration of graphene layers during self-assembly remains a significant challenge. In this study, we present a green and efficient self-assembly strategy combining a one-step hydrothermal process with a solution immersion method to fabricate a PDMS-coated epoxidized natural rubber–graphene composite aerogel (P@EGA). The resulting aerogel exhibits a high specific surface area (482.362 m2 g−1), hierarchical pore distribution from microporous to macroporous, ultra-low density (0.0104 g cm−3) and excellent hydrophobicity (contact angle = 147.6°). Remarkably, it retains 97.54% of its compressive stress after 50 compression-release cycles at 80% strain and quickly recovers its shape under a 500 g load. The P@EGA aerogel demonstrates outstanding adsorption capacities (65.37–132.75 g g−1) for various oils and organic solvents, complete oil absorption in 0.4 seconds, and effortless regeneration through simple squeezing. Furthermore, its dual functionality in gravity-driven and powered water–oil separation systems underscores its broad application potential in environmental remediation.

Graphical abstract: Hydrophobic dual-polymer–reinforced graphene composite aerogel for efficient water–oil separation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
18 Sep 2024
Accepted
15 Dec 2024
First published
03 Jan 2025
This article is Open Access
Creative Commons BY license

RSC Adv., 2025,15, 1-13

Hydrophobic dual-polymer–reinforced graphene composite aerogel for efficient water–oil separation

Z. Luo, S. Huang, N. Kong, J. Zhang, J. Tao, J. Li and S. Li, RSC Adv., 2025, 15, 1 DOI: 10.1039/D4RA06747A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements