Study about the effect of cellulose nanocrystals on a polyacrylate miniemulsion
Abstract
Cellulose nanocrystals (CNC) are widely used due to their biodegradability, high strength, large surface area, and functional versatility. This study investigates the interaction between CNC and acrylate emulsions, which mainly focuses on their impact on emulsion characteristics, polymerization behaviour, and storage stability. CNC was incorporated into an acrylate miniemulsion system at varying concentrations, followed by the systematic study of its effects on particle size, interfacial tension, zeta potential, yield, and viscosity. The morphology of CNC-acrylate systems was analysed using infrared spectroscopy and scanning electron microscopy (SEM). The results demonstrated that CNC effectively co-stabilized acrylate miniemulsions and enhanced their stability before polymerization. Although CNC did not directly participate in polymerization or affect yield or reaction rates, it slowed the diffusion of free radicals. However, CNC concentrations higher than 1 wt% negatively impacted post-polymerization storage stability and caused aggregation of droplets. These findings reveal the dual role of CNC as both a stabilizing and aggregating agent, offering new insights into its potential for the design of advanced polymer systems.