Structurally divergent reactivity of 2,2-disubstituted azetidines – mechanistic insights and stereochemical implications of amide coupling and ring expansion to 5,6-dihydro-4H-1,3-oxazines

Abstract

Azetidines have gained traction in drug discovery for their ability to introduce conformational constraint and modulate physiochemical properties. Strategies that enable their selective functionalization or controlled expansion into more complex scaffolds provide opportunities for molecular diversification to rapidly access new chemical space. Subjecting 2,2-disubstituted azetidines to amide coupling with carboxylic acids is found to effect either N-acylation or ring expansion to spiro and 6,6-disubstituted 5,6-dihydro-4H-1,3-oxazine, dependent on reaction conditions. A diverse range of topologically interesting heterocycles, which hold significant potential for pharmaceutical screening, have been prepared using this divergent reaction manifold. A mechanistic framework, supported by additive screening and trapping experiments, is presented to account for the ring expansion and racemization that accompanies these transformations when the substrate allows formation of a ring-opened azafulvenium intermediate.

Graphical abstract: Structurally divergent reactivity of 2,2-disubstituted azetidines – mechanistic insights and stereochemical implications of amide coupling and ring expansion to 5,6-dihydro-4H-1,3-oxazines

Supplementary files

Article information

Article type
Research Article
Submitted
22 May 2025
Accepted
26 Aug 2025
First published
28 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Org. Chem. Front., 2025, Advance Article

Structurally divergent reactivity of 2,2-disubstituted azetidines – mechanistic insights and stereochemical implications of amide coupling and ring expansion to 5,6-dihydro-4H-1,3-oxazines

A. K. Sahay, C. S. Begg, X. Zhang, James. A. Bull and A. C. Spivey, Org. Chem. Front., 2025, Advance Article , DOI: 10.1039/D5QO00804B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements