Stabilization of the cubic π-phase of SnS by calcium substitution

Abstract

The cubic phase of tin monosulphide, π-SnS, is of significant interest due to its attractive properties, such as a wider band gap suitable for solar photovoltaic application and being easier to epitaxially deposit onto technologically relevant semiconductors compared to the thermodynamically stable orthorhombic phase of α-SnS. Recently, we reported cation-assisted phase control for obtaining π-SnS rather than α-SnS using Pb2+ cations with a concentration of ∼20 cation percent (cat%). However, replacing Pb2+ with alternative non-toxic, environmentally friendly cations for cubic phase stabilization would be clearly advantageous. We have computationally investigated the energetics and electronic properties of calcium ion impurities in both SnS polymorphs. We found that addition of Ca2+ cations enables phase control of SnS grown from solution from α-SnS to π-SnS. Experimentally, we observed compact films of π-SnS after incorporating Ca2+ cations. Computational results indicated that ∼11 cat% of Ca2+ ions are required for preferred growth of π-SnS over α-SnS. Furthermore, the presence of an intermediate layer of CaS is computationally predicted to significantly contribute to the stabilization of the π-SnS phase, thereby reducing the Ca concentration required, which aligns well with experimental observations. Subsequently, we find that CaS is a promising substrate for epitaxial growth of π-SnS in the (111) orientation. Moreover, the bandgap of π-SnS decreased slightly with increasing concentration of Ca cations in the material. These results can facilitate the bulk scale synthesis of π-SnS material, bringing it closer to practical utility for a range of applications.

Graphical abstract: Stabilization of the cubic π-phase of SnS by calcium substitution

Supplementary files

Article information

Article type
Research Article
Submitted
28 May 2025
Accepted
01 Sep 2025
First published
25 Sep 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Chem. Front., 2025, Advance Article

Stabilization of the cubic π-phase of SnS by calcium substitution

N. Mishra, S. Paul, L. R. Friedlander, Y. Golan and G. Makov, Mater. Chem. Front., 2025, Advance Article , DOI: 10.1039/D5QM00399G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements