Rational design of lead-free CsCu2I3@g-C3N4 composite for efficient energy storage and sustainable catalysis

Abstract

Rationally constructed lead-free halide perovskite-based composites provide an effective approach for upgrading their many unique physicochemical properties. In this study, we report the design and synthesis of a stable lead-free CsCu2I3 (CCI) perovskite integrated with g-C3N4 (CN) using a simple ultrasonication approach. The individual components, CsCu2I3 and g-C3N4, were synthesized separately using the hot-injection method and the thermal polycondensation method, respectively. Interestingly, the composite material CsCu2I3@g-C3N4 (CCI–CN) exhibited outstanding hybrid supercapacitive behaviour and opened a new avenue for the untapped electrochemical potential of Cu-based lead-free halide perovskites. The hybrid CCI–CN material was also examined, for the first time, as a heterogeneous multifunctional catalyst in the photo-hydration of benzonitrile and the photo-reduction of para-nitroaniline. Moreover, the synthesized composite catalyst was very efficient in the synthesis of the medicinally potent N-heterocyclic compounds, quinazolin-4(3H)-one moieties. It was observed that CsCu2I3@g-C3N4 not only outperformed its individual components, CsCu2I3 and g-C3N4, but also surpassed other reported catalysts in the aforementioned transformations, delivering excellent product yields. This was attributed to the cooperative and synergistic effects of the CsCu2I3 and g-C3N4 heterojunction. Photoluminescence studies revealed that the reduced recombination in the composite material provided a fast channel for the transfer of photo-generated electrons, with the lower PL lifetime of CCI–CN (119.8307 ns) compared to CCI (151.2798 ns). Hence, this study provides ideas and opportunities of Cu-based halide perovskite composites as efficient materials for charge storage and versatile catalytic activity.

Graphical abstract: Rational design of lead-free CsCu2I3@g-C3N4 composite for efficient energy storage and sustainable catalysis

Supplementary files

Article information

Article type
Research Article
Submitted
16 May 2025
Accepted
01 Jul 2025
First published
02 Jul 2025

Mater. Chem. Front., 2025, Advance Article

Rational design of lead-free CsCu2I3@g-C3N4 composite for efficient energy storage and sustainable catalysis

M. Gogoi, D. Roy, J. Morang, N. Dutta, T. K. Sahu, D. Sarma and K. Deori, Mater. Chem. Front., 2025, Advance Article , DOI: 10.1039/D5QM00374A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements