Conformational regulation to realize modifiable ESIPT (excited-state intramolecular proton transfer) through intermolecular interactions†
Abstract
Regulating molecular conformation changes is crucial yet challenging for manipulating multiple-responsive emissions in excited-state intramolecular proton transfer (ESIPT) materials. In this work, we explored the specific emission regulation of a dual-ESIPT-active molecule, BDIBD (2,5-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene-1,4-diol), by subtly controlling the ground and excited states through different crystallization conformations. Notably, the crystals obtained in dimethylformamide (BDIBD–DMF) and methanol (BDIBD–MeOH) exhibited a single emission band, corresponding to the green and red emission from the keto1st and keto2nd excited states, respectively, while the crystals obtained in acetone (BDIBD–ACE) displayed dual emissions from both states, resulting in an overall yellow color. A comprehensive theoretical study verified that the modified intermolecular interactions, due to different crystallization conformations, regulated emissions by affecting the energy barrier of dual-ESIPT processes. The above results provide a concrete understanding of the regulation of excited-state emissions through ground-state conformational changes in ESIPT processes, as well as unique insights into the design and application of novel ESIPT emission materials.