Issue 5, 2025

Arrays of ultra-thin selenium-doped zirconium-anodic-oxide nanorods as potential antibacterial coatings

Abstract

Two characteristic types of extraordinarily thin upright-standing ZrO2-based nanorods self-aligned on a substrate, differing in diameters (20/30 nm), lengths (90/120 nm), and population densities (1.1/4.6 × 1010 cm−2), were synthesized via the porous-anodic-alumina (PAA)-assisted anodization of Zr in 1.5 M selenic acid followed by selective PAA dissolution. A needle-like shape was achieved due to the unique formation of zirconium anodic oxide in extremely thin nanopores that grow only in selenic acid. The SEM, XPS, and Raman spectroscopy analyses revealed that the nanorods feature a core/shell structure in which the core is stoichiometric amorphous ZrO2, and the shell is ∼6 nm thick hydroxylated zirconium dioxide ZrO2−x(OH)2x mixed with Al2O3. The core and shell incorporated electrolyte-derived selenate (SeO42−) ions, which replace up to 1% of the O2− ions in the nanorod surface layer. Besides, nanoparticles of elemental Se were deposited on the top of rods during anodic polarization. A model was developed for the cooperative ionic transport and electrochemical and solid-state reactions during the PAA-assisted growth of zirconium oxide in selenic acid. The two Se-doped top-decorated zirconium-oxide nanorod arrays were examined as potential antibacterial nanomaterials toward G-negative E. coli and G-positive S. aureus, using direct SEM observations of the bacteria–surface interfaces and carrying out the modified Japanese Industrial Standard test for antimicrobial activity and efficacy, JIS Z 2801. While specific differences in interaction with each type of bacteria were observed, both nanostructures caused a significant harmful synergetic effect on the bacteria, acting as non-metallic (Se) ion-releasing bactericidal coatings along with repellent and contact-killing activities arising from extraordinary needle-like nanoscale surface engineering.

Graphical abstract: Arrays of ultra-thin selenium-doped zirconium-anodic-oxide nanorods as potential antibacterial coatings

Supplementary files

Article information

Article type
Research Article
Submitted
10 Dec 2024
Accepted
16 Jan 2025
First published
17 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Mater. Chem. Front., 2025,9, 866-883

Arrays of ultra-thin selenium-doped zirconium-anodic-oxide nanorods as potential antibacterial coatings

K. Kamnev, M. Bendova, Z. Fohlerova, T. Fialova, O. Martyniuk, J. Prasek, K. Cihalova and A. Mozalev, Mater. Chem. Front., 2025, 9, 866 DOI: 10.1039/D4QM01081G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements