Issue 3, 2025

Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal

Abstract

A well-designed catalyst structure can significantly enhance the efficiency of photocatalytic light-trapping. Herein, the local surface plasmon resonance effect (LSPR) generated by introducing BiOCl nanosheets effectively broadened the photoresponsive range of ZnIn2S4 (ZIS), and the photothermal effect of BiOCl increased the temperature of the reaction system of the BiOCl@ZIS-1% composites, which in turn improved the photo-thermal performance and light-harvesting efficiency of the catalyst. The improved photothermal effect promoted the transfer rate of charge carriers across the heterojunction and enhanced the surface reaction kinetics. In addition, Kelvin probe force microscopy and density functional theory (DFT) calculations showed that the difference of merit between BiOCl and ZIS led to the generation of an internal electric field, which not only enhanced the efficiency of photogenerated charges to separate and migrate but also promoted the photocatalytic H2 production (13.69 mmol g−1 h−1), H2O2 generation (9670 μM g−1 h−1) and tetracycline degradation performance (86.2%). In addition, a possible reaction mechanism for photothermal-assisted photocatalysis was presented. Thus, this research proposes a possible direction for constructing a visible photothermal-assisted photocatalytic reaction system.

Graphical abstract: Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal

Supplementary files

Article information

Article type
Research Article
Submitted
05 Nov 2024
Accepted
18 Dec 2024
First published
03 Jan 2025

Inorg. Chem. Front., 2025,12, 1200-1213

Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn2S4 heterojunction for enhanced photocatalytic H2 evolution, H2O2 production and tetracycline removal

F. Wu, G. Wu, Y. Tang, Y. Pan, J. Han, J. Zhang, W. Xing and Y. Huang, Inorg. Chem. Front., 2025, 12, 1200 DOI: 10.1039/D4QI02806F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements