Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

According to the theory established by Carothers and Flory, stoichiometric control of monomers is necessary for efficient step-growth polymerization of AA-type and BB-type monomers in a single-phase solution. This review examines recent progress in synthesizing high-molecular-weight polymers via atypical nonstoichiometric step-growth polymerization (NSSP). The reactive intermediate mechanism (RIM) and intramolecular catalyst transfer (ICT) systems are essential for efficient NSSP, generating polymers with much higher molecular weights than theoretically predicted. NSSP systems provide many advantages in fine synthetic technologies for producing complex multifunctional polymers suitable for specific applications.

Graphical abstract: Recent progress in nonstoichiometric step-growth polymerization

Page: ^ Top