Cyclodextrin-based nanosponge co-delivery of doxorubicin and EMD: synergistic anticancer activity with improved selectivity toward cancer cells

Abstract

Combination therapy is a promising strategy in cancer treatment aiming at improving therapeutic efficacy and overcoming tumour resistance. Cyclodextrin-based nanosponges (EpCN) were developed here for the co-delivery of doxorubicin (DX), a hydrophilic chemotherapeutic agent, alongside N,N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD), a hydrophobic compound targeting c-Myc. EpCNs were synthesized by crosslinking β-cyclodextrin with epichlorohydrin, then DX and EMD were loaded either separately or together into the nanosponge. The nanosponges were extensively characterized combining Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Nuclear Magnetic Resonance (NMR). The dual-loaded nanosponges with DX and EMD (DX/EMD-EpCN) displayed uniform sizes (30 ± 13 nm), high encapsulation efficiency (>98%), a zeta potential of +23 ± 4 mV, and a pH-responsive drug release, with faster release at acidic pH mimicking tumour conditions. In vitro studies were carried out on cancerous (A549 and MCF-7) and non-cancerous (WI-38) cells to explore the therapeutic potential of the drug-loaded EpCNs. Cytotoxicity results demonstrated that DX/EMD-EpCNs significantly reduced cell viability, more than free drugs or single drug-loaded EpCNs in both cancerous cell lines. The therapeutic potential of combining DX and EMD was improved by the encapsulation into EpCN, as indicated by a strong synergism (combination index: <0.6), with a reduced effective dose, and improved drug uptake in cancer cells while sparing normal cells. Cell cycle analysis reveals that DX/EMD-EpCNs induced multi-phase arrest at the G0/G1 and G2/M phases, leading to a superior apoptotic induction as confirmed by the annexin V/Zombie UV staining. Western blot analysis demonstrated that the DX/EMD-EpCN significantly suppressed c-Myc and Bcl-2 expression while increased cleaved-PARP expression in both cancer cell lines, indicating the activation of caspase-dependent apoptosis. In contrast, the downregulation of c-Myc and Bcl-2 by single drug-loaded EpCNs altered cell cycle progression but did not significantly induced apoptosis. The co-delivery of DX and EMD by EpCNs enhanced therapeutic potency through various mechanisms. These findings highlight the potential of cyclodextrin-based nanosponges as a versatile drug delivery platform for combination chemotherapy profiting from their capability of simultaneously encapsulating both hydrophilic and hydrophobic drugs.

Graphical abstract: Cyclodextrin-based nanosponge co-delivery of doxorubicin and EMD: synergistic anticancer activity with improved selectivity toward cancer cells

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2025
Accepted
25 Aug 2025
First published
26 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2025, Advance Article

Cyclodextrin-based nanosponge co-delivery of doxorubicin and EMD: synergistic anticancer activity with improved selectivity toward cancer cells

S. Thongsom, P. Di Gianvincenzo, G. Ciattaglia, A. Subrati, D. DiSilvio, A. M. Birocco, M. D'Abramo, C. Boonla, P. Chanvorachote and S. E. Moya, RSC Pharm., 2025, Advance Article , DOI: 10.1039/D5PM00183H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements