Release performance and crystallization of racemic and enantiopure praziquantel amorphous solid dispersion in various media

Abstract

Praziquantel (PZQ) is the first-line treatment for schistosomiasis, but its low aqueous solubility and extensive first-pass metabolism limit PZQ's bioavailability. Furthermore, the commercial formulation of PZQ includes the inactive (S)-PZQ enantiomer, which causes unwanted side effects and a bitter taste. This work aimed to evaluate the impact of chirality on PZQ's performance in amorphous solid dispersion (ASD) formulations prepared from both racemic and the active (R)-PZQ enantiomer, with additional studies on polymer type and processing method. ASDs of (R,S)-PZQ and (R)-PZQ at 30% drug loading were prepared with HPMCAS MF and HPMC E5 via solvent evaporation (SE) and hot-melt extrusion (HME). Release testing was conducted in aqueous media with different pH values and in biorelevant media simulating fasted- and fed-state conditions. Results demonstrated that ASDs significantly enhanced PZQ concentrations, with the amorphous solubility being up to 8-fold higher than that of the corresponding crystalline form. HPMCAS-based ASDs showed pH-dependent release, with poor release at gastric pH but achieving near-complete release with crystallization inhibition at intestinal pH conditions, while HPMC-based ASDs exhibited faster gastric release but reduced stability due to crystallization, which was confirmed by polarized light microscopy (PLM) and powder X-ray diffraction (PXRD). (R)-PZQ-HPMCAS ASDs outperformed (R,S)-PZQ-HPMCAS ASDs in simple media at pH 6.5 at high target concentration, which was attributed to a slightly higher amorphous solubility. However, both ASDs exhibited comparable release in fasted-state media due to bile salt-enhanced solubility. PZQ-ASDs showed crystallization when evaluated in FeSSIF-V2 and did not release well. Different processing methods minimally affected release profiles, highlighting HME's potential as a scalable, solvent-free method. These findings suggest that (R)-PZQ-HPMCAS is a promising alternative to commercial racemic PZQ formulations, potentially reducing side effects and improving patient compliance through allowing for a reduced pill burden.

Graphical abstract: Release performance and crystallization of racemic and enantiopure praziquantel amorphous solid dispersion in various media

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2025
Accepted
03 Jul 2025
First published
08 Jul 2025
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2025, Advance Article

Release performance and crystallization of racemic and enantiopure praziquantel amorphous solid dispersion in various media

B. R. de Alvarenga Junior and L. S. Taylor, RSC Pharm., 2025, Advance Article , DOI: 10.1039/D5PM00117J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements