Solid lipid nanoparticles in cervical cancer: a comprehensive review of a decade of progress and prospects
Abstract
Background: Cervical cancer is the second most commonly diagnosed cancer worldwide and the third leading cause of death among women, with approximately 604 127 new cases being reported in 2020. Conventional treatment methods, such as chemotherapy, radiation therapy, surgery, and hormonal therapy, often face significant challenges, including systemic toxicity and reduced efficacy, particularly in the advanced stages of the disease. The treatment of cervical cancer is further complicated by tumor heterogeneity, resistance mechanisms to chemotherapeutic drugs, and the persistent presence of HPV. However, in recent years, nanotechnological interventions, particularly solid lipid nanoparticles (SLNs), have gained increasing attention owing to their robust potential to effectively deliver chemotherapeutic agents while minimizing systemic toxicity. SLNs present a compelling solution for reducing side effects, enhancing drug solubility, improving stability and bioavailability, and overcoming the limitations and resistance associated with conventional treatment strategies. Methods: To provide the context and evidence, relevant publications were searched on Google Scholar, PubMed, ScienceDirect, Dimensions AI, and EBSCO host, using specific keywords such as “cervical cancer”, “drug loading”, “encapsulation efficiency”, “HPV”, “sustained drug release”, and “solid lipid nanoparticles (SLNs)”. We did not impose any restrictions on the publication date during the selection of papers. However, it is imperative to highlight that the initial reports containing specified keywords began publication in 2013. Conclusion: SLNs represent a promising frontier in drug delivery, particularly within cervical cancer therapeutics, because of their ability to facilitate the targeted delivery of chemotherapeutic agents and genetic materials. The potential of SLNs to encapsulate and protect vital therapeutic compounds presents significant opportunities for developing innovative treatment strategies including DNA and peptide vaccines. However, the lack of approved SLN-encapsulated vaccines for cervical cancer underscores the need for rigorous in vivo research and clinical trials to validate their safety and efficacy. Future studies should not only optimize SLNs for various agents but also explore diverse combination therapies to enhance therapeutic outcomes.