Issue 2, 2025

Design and evaluation of solid self-nanoemulsifying drug delivery systems of cyclosporine developed with a superior adsorbent base

Abstract

Cyclosporine (CYC) is a drug that belongs to the BCS class II category. This study was designed to develop novel solid self-nanoemulsifying drug delivery systems (S-SNEDDS) for cyclosporine (CYC), using chitosan–EDTA microparticles. Such microparticles are known to exhibit superior adsorbent characteristics and were prepared by two different methods viz. spray drying (SD-CHEM) and solvent evaporation (SE-CHEM). Capmul® GMS-50K, Labrafac, and PEG 400 were chosen as the oil, surfactant, and co-surfactant, respectively. The cyclosporine liquid self-nanoemulsifying drug delivery system (CYC-L-SNEDDS) was developed with an optimal oil to Smix (surfactant : co-surfactant) ratio of 40 : 60, determined through a pseudo ternary phase diagram. The novel S-SNEDDS were developed by adsorbing CYC-L-SNEDDS onto the chitosan–EDTA microparticles, resulting in CYC-SD-S-SNEDDS and CYC-SE-S-SNEDDS. Both formulations exhibited favorable drug loading, with 81.184 ± 4.191% for CYC-SD-S-SNEDDS and 56.426 ± 5.471% for CYC-SE-S-SNEDDS. XRD and DSC confirmed drug amorphization, while SEM revealed a smooth, well-distributed adsorbate on the adsorbent surfaces, with particle sizes of 5–8 μm for CYC-SD-S-SNEDDS and 10–12 μm for CYC-SE-S-SNEDDS. When tested for stability, the developed formulations exhibited excellent physical and thermodynamic stability. The globule size for CYC-SD-S-SNEDDS was 138.7 ± 4.14 nm, with a PDI of 0.613 ± 0.004, while CYC-SE-S-SNEDDS had a globule size of 166.9 ± 4.04 nm and a PDI of 0.579 ± 0.003. The results of in vitro dissolution studies revealed that there was a fourfold increase in drug dissolution for CYC-SD-S-SNEDDS (80.03%) and CYC-SE-S-SNEDDS (72.26%) when compared to the pure cyclosporine (19.8%). A similar pattern was observed in ex vivo permeation studies where CYC-SD-S-SNEDDS showed 39.34% release and CYC-SE-S-SNEDDS exhibited 28.31% release as compared to CYC-L-SNEDDS (41.46%). Furthermore, CYC-SD-S-SNEDDS outperformed CYC-SE-S-SNEDDS, indicating the superiority of microparticles developed by the spray drying method (SD-CHEM) as adsorbents for solidification. These findings suggest enhanced dissolution and permeation for cyclosporine in S-SNEDDS.

Graphical abstract: Design and evaluation of solid self-nanoemulsifying drug delivery systems of cyclosporine developed with a superior adsorbent base

Supplementary files

Article information

Article type
Paper
Submitted
09 Jul 2024
Accepted
26 Nov 2024
First published
11 Dec 2024
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2025,2, 318-332

Design and evaluation of solid self-nanoemulsifying drug delivery systems of cyclosporine developed with a superior adsorbent base

M. Kumar, P. A. Chawla, A. Faruk and V. Chawla, RSC Pharm., 2025, 2, 318 DOI: 10.1039/D4PM00198B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements