Solvatomorphism of a 2,6-pyridyldicarboxamide-based foldamer†
Abstract
A detailed solvatomorphism study conducted on a diamine-terminated 2,6-pyridyldicarboxamide-based foldamer 1 is reported. This investigation establishes the influence of a diverse range of polar and non-polar solvents including chloroform (1A), a trifluorotoluene/dichloromethane mixture (1A), dimethylformamide/diethyl ether (1B), tetrahydrofuran (1·THF), butanone (1·butanone), dichloromethane (1·DCM), a methanol/dichloromethane mixture (1·MeOH) and dimethylsulfoxide (1·DMSO) on the solid-state conformation and crystal packing behaviour of this supramolecular scaffold. Single-crystal X-ray diffraction analysis of the seven solvatomorphs of the studied foldamer (1A, 1B, 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO) identified that 1·DCM, 1·THF, 1·butanone, 1·MeOH and 1·DMSO form supramolecular aggregates (e.g., channels/cavities) which incorporate solvent molecules within the voids of the system, leading them to adopt channels of differing dimensions between 3.5 and 9.0 Å. Solid-state analysis identified that a diverse array of intermolecular non-covalent interactions form between the foldamer and the solvent molecule, including N–H⋯O, N–H⋯Cl, O–H⋯O, N–H⋯Cl and C–H⋯O hydrogen-bonding interactions, stabilising the formation of these solvent-mediated channel aggregates within the different solvatomorphs of the studied foldamer. We envisage that these solvatomorphism studies will facilitate the future design of foldamers, particularly given the emerging solid-state applications of foldamers which could hold relevance in the field of crystal engineering or for the uptake of small molecules for long-term use in energy storage and materials chemistry.
- This article is part of the themed collection: Foldamers