Issue 15, 2025

An azothiazole probe as a multianalyte colorimetric chemosensor for urea and biologically significant amines

Abstract

We report an azothiazole-based probe as a chemosensor for urea with a LOD of 45 μM. The underlying sensing principle is an instantaneous color change associated with the complex forming between the probe and ammonia, a hydrolysis product of urea catalyzed by the enzyme urease. In addition, the probe has a broad scope in sensing biologically significant amines such as arginine and lysine across a wide range of pH (4 to 8). Through extensive spectroscopic and computational studies in conjunction with control experiments, the importance of H-bonding in the sensing mechanism has been unraveled, revealing the stoichiometry, binding constant and LOD of these analytes with the probe. Indeed, the two individual amino acids can be distinguished by the spectral changes associated with UV-vis spectroscopy or by contrasting color diffusion under agarose gel conditions. Moreover, the probe shows a broad scope in detecting a range of aliphatic primary and secondary amines, including cyclic amines. The utility of the probe has also been demonstrated by using it for sensing urea in urine samples. These attributes make this probe a cost-effective, reusable and versatile chemosensor with ease of handling for sensing multianalytes by varying the conditions and detection modes.

Graphical abstract: An azothiazole probe as a multianalyte colorimetric chemosensor for urea and biologically significant amines

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
16 Jan 2025
Accepted
11 Mar 2025
First published
12 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Org. Biomol. Chem., 2025,23, 3634-3642

An azothiazole probe as a multianalyte colorimetric chemosensor for urea and biologically significant amines

S. Singh, A. Velloth, R. R. Mahato, S. Grewal, S. Maiti and S. Venkataramani, Org. Biomol. Chem., 2025, 23, 3634 DOI: 10.1039/D5OB00077G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements