Biomimetic Red Blood Cell Membrane-Coated FePt Metal-Organic Framework Nanoparticles: A Multifunctional Theranostic System for Enhanced MRI and Targeted Therapy

Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive technique that provides high-resolution tissue imaging, making it a potential tool for hepatocellular carcinoma (HCC) imaging diagnosis. However, effective visualization of HCC-related molecular changes requires advanced nanoscale contrast agents with surface modifications for specific biomarker binding. Iron-platinum nanoparticles (FePt NPs) are widely used for T2-weighted MRI contrast but are rapidly degraded by macrophages, limiting their accumulation and signal enhancement in vivo. To address this issue, metal-organic frameworks (MOFs) can encapsulate FePt NPs to improve stability and imaging contrast. Additionally, red blood cell membrane (RBC-m) coating enhances tumor tissue accumulation, enabling real-time tracking and diagnosis of HCC. Initial studies have demonstrated the effectiveness of this technology in HCC imaging diagnosis, contributing to disease monitoring and treatment evaluation. With further optimization, these nanocomposite probes have the potential to enhance MRI-based HCC diagnostics, bridging molecular biology and clinical imaging to advance personalized medicine.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Aug 2025
Accepted
26 Aug 2025
First published
28 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2025, Accepted Manuscript

Biomimetic Red Blood Cell Membrane-Coated FePt Metal-Organic Framework Nanoparticles: A Multifunctional Theranostic System for Enhanced MRI and Targeted Therapy

M. Chan, R. Zhuang, D. Wei and M. Hsiao, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D5NR03294F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements