Enhanced Solid-State Electrochemiluminescence Platform Via Finely-Tuned Thickness Dependent Graphitic Carbon Nitride Nanosheets for Towards Selective Sensing of Glutathione

Abstract

Compared with conventional luminophores, the metal-free two-dimensional semiconductor like graphitic carbon nitride (g-C3N4) has emerged as a greener alternative luminophore in electrochemiluminescence (ECL) based biosensing application. Herein, we investigate for the first time the thickness-dependent solid-state ECL studies on graphitic carbon nitride nanosheets (g-C3N4 N.S) modified on glassy carbon electrode by synthesising an environmentally friendly, solvent-free thermal polycondensation method. Systematic spectral and morphological studies confirm that the optimized ratio of melamine to ammonium sulfate produces a precisely tuned thickness of g-C3N4 N.S. Ultrathin g-C3N4 N.S with a thickness of 23 nm exhibits significantly enhanced both anodic and cathodic solid-state ECL intensity without involving any additional co-reactant during electrochemical cycling at ambient conditions of physiological pH -7.4. More precisely, the intensity of cathodic and anodic solid-state ECL of g-C3N4 N.S (thickness 23 nm) is 12 times and 2 times greater than that of bulk g-C3N4, which is due to the g-C3N4 N.S electrocatalytically producing more reactive oxygen species (ROS) via the dissolved oxygen reduction reaction. Interestingly, when K2S2O8 is introduced as an external co-reactant, the same 23 nm thickness g-C3N4 N.S shows an impressive 205-fold increase specifically in cathodic ECL intensity under even nitrogen gas saturated conditions. This effect becomes even more remarkable, reaching a 350-fold increase under oxygen-saturated conditions where both in-situ and ex-situ co-reactants are present in the electrolyte solution and show stable solid-state ECL up to 180 seconds with a color purity of 33.95%. This kind of unique thickness-dependent surface-enhanced g-C3N4 N.S was used as a solid-state ECL platform for the selective detection of reduced glutathione (GSH), as a proof-of-concept experiment. This exceptional ECL probe stands as a testament to unparalleled sensitivity, rapid response times, and unmatched accuracy for GSH concentrations ranging from 1.0×10-6 to 5.0×10-3 M, culminating in a LOD of 43×10-9 M in a human urine sample with good recovery results. This study ignites inspiring insights into revolutionary approaches for quantifying GSH levels in urine, paving the way for significant advancements in non-invasive, stable, accessible alternative medical diagnostics.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
27 Jul 2025
Accepted
12 Sep 2025
First published
18 Sep 2025

Nanoscale, 2025, Accepted Manuscript

Enhanced Solid-State Electrochemiluminescence Platform Via Finely-Tuned Thickness Dependent Graphitic Carbon Nitride Nanosheets for Towards Selective Sensing of Glutathione

G. R. Pandi, A. N. Irudayasamy and S. Senthil Kumar, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D5NR03171K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements