Impact of trivalent Sb3+-ion doping on charge carrier recombination dynamics of cesium lead bromide perovskite quantum dots
Abstract
Metal-ion doping of perovskites has proven to enhance their photoluminescence (PL) properties and stability; however, the underlying charge carrier dynamics remain unclear. We synthesized a cesium lead bromide (CsPbBr3) perovskite quantum dot (PQD) incorporating a heterovalent Sb3+ ion dopant and its pristine counterpart and performed time-resolved single-particle PL spectroscopy. The PL intensity and lifetime of the Sb-CsPbBr3 PQD were remarkably enhanced compared to those of the pristine-CsPbBr3 PQD because of diminished nonradiative charge carrier recombination dynamics. The charge carrier trapping (detrapping) rate was lower (higher) for the Sb-CsPbBr3 PQD than for the pristine-CsPbBr3 PQD, as the Sb3+ doping contributed to hindering the formation of the structural defects responsible for charge carrier trap states and increasing the exciton binding energy. The replacement of Pb2+ with Sb3+, which has a smaller ionic radius, in the CsPbBr3 structure effectively increased the tolerance factor, enabling the doped PQD to exhibit more stable local structures and, thus, suppressing its decomposition.

Please wait while we load your content...