van der Waals devices for surface-sensitive experiments
Abstract
In-operando characterization of van der Waals (vdW) devices using surface-sensitive methods provides critical insights into phase transitions and correlated electronic states. Yet, integrating vdW materials in functional devices while maintaining pristine surfaces is a key challenge for combined transport and surface-sensitive experiments. Conventional lithographic techniques introduce surface contamination, limiting the applicability of state-of-the-art spectroscopic probes. We present a stencil lithography-based approach for fabricating vdW devices, producing micron-scale electrical contacts, and exfoliation in ultra-high vacuum. The resist-free patterning method utilizes a shadow mask to define electrical contacts and yields thin flakes down to the single-layer regime via gold-assisted exfoliation. As a demonstration, we fabricate devices from 1T-TaS2 flakes, achieving reliable contacts for application of electrical pulses and resistance measurements, as well as clean surfaces allowing for angle-resolved photoemission spectroscopy. The approach provides a platform for studying the electronic properties of vdW systems with surface-sensitive probes in well-defined device geometries.
- This article is part of the themed collection: Quantum nanomaterials

Please wait while we load your content...