Issue 28, 2025

In search of the smoothest nanoparticle surface: diffusion and mobility on Ag clusters

Abstract

Surface diffusion is the key atomic process in nanoparticle growth. Regular shapes and low-defect surfaces can only be obtained if the deposited atoms are able to move over the entire surface of the nanoparticle—something that may be hindered by the presence of edges separating adjacent facets. Edge crossing is the rate-limiting step for adatom diffusion on nanoparticle surfaces and, consequently, edges of different sharpness are expected to affect diffusion processes differently. Here, we investigate this problem in the case of a silver adatom diffusing on top of nanoparticles with different geometric shapes: tetrahedron, octahedron, Mackay icosahedron, and chiral icosahedron. All structures have close-packed (111) facets—on which diffusion is very fast—separated by edges of different types. Using molecular dynamics simulations, we identify the most relevant edge-crossing processes and estimate their activation barriers. Our results clearly show that the geometrical shape of the nanoparticle strongly influences the inter-facet diffusion of atoms, affecting the energy barriers associated with edge-crossing processes. Jump and exchange diffusion barriers depend on the edge sharpness in opposite ways, so that—interestingly—the smoothest surfaces for adatom diffusion are both the sharpest (the tetrahedron) and the most rounded (the chiral icosahedron). Our results for Ag clusters are expected to hold for other fcc metals as well.

Graphical abstract: In search of the smoothest nanoparticle surface: diffusion and mobility on Ag clusters

Article information

Article type
Paper
Submitted
29 Apr 2025
Accepted
25 Jun 2025
First published
30 Jun 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2025,17, 16784-16795

In search of the smoothest nanoparticle surface: diffusion and mobility on Ag clusters

N. Canestrari, R. Ferrando and D. Nelli, Nanoscale, 2025, 17, 16784 DOI: 10.1039/D5NR01752A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements