Unraveling Packing-Dependent Surface Potential Contrast in Single-Walled Carbon Nanotube Bundles Network

Abstract

The surface potential of single-walled carbon nanotube (SWCNTs) bundles is influenced by various factors, notably their arrangement during packing. Understanding this packing-dependent surface potential entails examining the interactions between individual nanotubes within a bundle and their collective effect on electrostatic properties. Our study delves into investigating the work function of SWCNT bundles, which can be modulated by factors such as the quantity and orientation of attached SWCNTs. Utilizing Kelvin probe force microscopy (KPFM) for characterization, we have observed surface potential, and consequently, the work function of SWCNT bundles varies with height and orientation. Our findings reveal that the surface potential undergoes changes based on the number of SWCNTs within a bundle. Moreover, the combination of parallel and crossed SWCNT bundles leads to distinct alterations in surface potential—an interesting experimental observation. Moreover, our demonstration reveals that applying an external bias to the SWCNT network splits ambient moisture into ions and protons, trapped within potential wells formed by the network of SWCNTs bound via Van der Waals interaction. This mechanism leads to observing a persistent reverse current even after removing the external bias.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Apr 2025
Accepted
14 Sep 2025
First published
18 Sep 2025

Nanoscale, 2025, Accepted Manuscript

Unraveling Packing-Dependent Surface Potential Contrast in Single-Walled Carbon Nanotube Bundles Network

D. K. Goswami, S. Mondal, S. Mandal, A. Mandal, S. Mallik, S. P. Verma, R. Sadhukhan and S. Pramanik, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D5NR01512J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements