Nanometrology assisted chemical fabrication: direct laser writing of porphyrins onto complex surfaces.

Abstract

The association of operando monitoring methodologies with micro and nanoscale surface modification strategies has recently been shown to enable the preparation of complex yet highly precise organic functional surfaces. While promissing, such demonstrations have so far been limited to model systems, consisting on minimally functionalized aryl radicals. With a growing demand for more sophisticated surfaces, bearing multiple functions, a demonstration of the generality of the strategy to chemically complex moieties and surfaces is deeply needed. In this work, we aim to fill this gap by preparing tetraphenyl porphyrin derivatives modified to become radical precursors that can be activated with light. Operando optical monitoring is used to non-invasively analyze their grafting behavior in different conditions, optimizing the routes to enable modification of inert glass surfaces with high precision (30 atto L). We demonstrate that the methodology is compatible with direct laser writing technologies, and use it to prepare photophysically active surfaces with high resolution. We demonstrate that the instrinsic emissive properties of Tetraphenylporphyrin derivatives are well preserved, and that several surface modifing steps can be sequentially stacked, leading to the preparation of surfaces with mulitple functions. By controlling the microscale distribution of chemical groups with different photophysical properties, we demonstrate that complex chemical designs can be readily and reliably implemented. This work therefore shows that light activated radical pathways can be broadly used to modify surfaces, opening interesting new perspectives for the implementation of functional materials.

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2025
Accepted
17 Jun 2025
First published
24 Jun 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2025, Accepted Manuscript

Nanometrology assisted chemical fabrication: direct laser writing of porphyrins onto complex surfaces.

B. Maillot, H. Rashid, R. Bercy, J. F. Audibert, M. J. Llansola-Portoles, I. LERAY, F. Miomandre and V. Brasiliense, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D5NR00765H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements