Spin effects in metal halide perovskite semiconductors
Abstract
Metal halide perovskite semiconductors (MHSs) are emerging as potential candidates for opto-spintronic applications due to their strong spin–orbit coupling, favorable light emission characteristics and highly tunable structural symmetry. Compared to the significant advancements in the optoelectronic applications of MHSs, the exploration and control of spin-related phenomena remain in their early stages. In this minireview, we provide an overview of the various spin effects observed both in achiral and chiral MHSs, emphasizing their potential for controlling interconversion between spin, charge and light. We specifically highlight the spin selective properties of chiral MHSs through the chirality-induced spin selectivity (CISS) phenomena, which enable innovative functionalities in devices such as spin-valves, spin-polarized light-emitting diodes, and polarized photodetectors. Furthermore, we discuss the prospects of MHSs as spintronic semiconductors and their future development in terms of material design, device architecture and stability.
- This article is part of the themed collection: Recent Review Articles