Issue 15, 2025

Optically active chiral photonic crystals exhibiting enhanced fluorescence and circularly polarized luminescence

Abstract

Photonic crystals with advanced, unique and well-defined functional nanostructures demonstrate exquisite controllable modulation in light harvesting and emission for unrivalled optical performance. Herein, through ingeniously integrating aggregation-induced emission (AIE) luminogens and chiral helical media into ordered periodic structures, the resulting optically active photonic crystal films exhibit an enhanced photoluminescence (PL) characteristic (increased to 2.2 times the original value) and distinctive emerging circular dichroism (CD) responses near the photonic bandgap (PBG) of the photonic crystal. The modulation of the PL intensity and CD signal peak position is precisely achieved by regulating the PBG by facilely tuning the size of the colloidal nanoparticles. Such an interesting phenomenon is mainly the consequence of the PBG edge enhancement effect (including the slow photon effect) and bandgap separation arising from chirality. Remarkably, the boosted fluorescence facilitates the synergistic effect of valid chirality transfer among achiral AIEgens and chiroptical media in a photonic matrix, which effectively contributes to the enhanced circularly polarized luminescence (CPL) activity, thereby expanding the potential applications of CPL-based optically active photonic materials in circularly polarizing emitting devices.

Graphical abstract: Optically active chiral photonic crystals exhibiting enhanced fluorescence and circularly polarized luminescence

Supplementary files

Article information

Article type
Paper
Submitted
26 Dec 2024
Accepted
26 Feb 2025
First published
04 Mar 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2025,17, 9330-9336

Optically active chiral photonic crystals exhibiting enhanced fluorescence and circularly polarized luminescence

Q. Guo, X. Huang, H. Li, J. Guo and C. Wang, Nanoscale, 2025, 17, 9330 DOI: 10.1039/D4NR05442C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements