An EHairpin-driven double-stem-loop programmable allosteric strategy for molecular security access control†
Abstract
The rapid development of DNA nanotechnology has made it possible to explore information security methods based on non-computational complexity, providing an effective way to avoid the threats that high-performance computational methods pose to modern cryptography. However, most molecular information security methods require both external stimuli and specific DNA signals, placing high demands for experimental conditions and DNA-sequence design, limiting their practical application and further development. Herein, we proposed an EHairpin-driven double-stem-loop programmable allosteric strategy for molecular security access control. Specifically, this strategy regulates the conformational changes in the double-stem-loop programmatically by responding to specific DNA input signals, converting molecular conformational changes into signal-response triggering events. We constructed a programmable allosteric strategy through the EHairpin structure to achieve the temporal response of the DNA signal-driven molecular structure and further built a molecular-switch-response circuit for multiple input signals. Finally, we implemented an EHairpin-driven molecular security access control system, which has a three-level security assurance mechanism of administrator authentication, authorization, and user authentication. This strategy offers a powerful method for security access control of molecular devices, further promoting the development of next-generation information security and providing some new ideas for the secure control of nanomachines, which has great potential in biosensing and disease diagnosis.