Effect of grain boundaries on metal atom migration and electronic transport in 2D TMD-based resistive switches†
Abstract
Atomic migration from metallic contacts, and subsequent filament formation, is recognised as a prevailing mechanism leading to resistive switching in memristors based on two-dimensional materials (2DMs). This study presents a detailed atomistic examination of the migration of different metal atoms across the grain boundaries (GBs) of 2DMs, employing density functional theory in conjunction with non-equilibrium Green's function transport simulations. Various types of metallic atoms, such as Au, Cu, Al, Ni, and Ag, are examined, focusing on their migration both in the out-of-plane direction through a MoS2 layer and along the surface of the MoS2 layer, pertinent to filament formation in vertical and lateral memristors, respectively. Different types of GBs usually present in MoS2 are considered to assess their influence on the diffusion of metal atoms. The findings are compared with those for structures based on pristine MoS2 and those with mono-sulfur vacancies, aiming to understand the key elements that affect the switching performance of memristors. Furthermore, transport simulations are carried out to evaluate the effects of GBs on both out-of-plane and in-plane electron conductance, providing valuable insights into the resistive switching ratio.