Nanoscale structural dynamics of cell edges in breast tumour cells revealed by scanning ion conductance microscopy†
Abstract
Cell migration plays a critical role in biological processes such as embryonic development, wound healing, cancer metastasis, and immune response. While the molecular mechanisms regulating cell movement are well-studied, bridging the gap between these mechanisms and macroscopic cell behaviour remains a significant challenge due to the disparity in scale. At the subcellular level, an intermediate scale between molecular and cellular scales, cell membranes exhibit complex structural dynamics that are difficult to quantify and poorly understood. In this study, we utilized time-lapse scanning ion conductance microscopy to visualise subcellular nanoscale structural dynamics at the edges of breast cancer cells. Through quantitative analysis, we successfully identified three key features: (1) dynamic edges with abundant filopodia, (2) an inverse relationship between the local cell migration rate and lamellipodia thickness, and (3) changes in the length and distance between cytoskeleton-filament-related structures following a Poisson process. These findings provide new insights into cell migration dynamics and contribute to bridging the gap between macroscopic and microscopic cellular motion.