Issue 19, 2025

Design of high-performance modular triboelectric nanogenerators for efficient mechanical energy harvesting and electrochemical applications

Abstract

Various forms of high-entropy energy (HEE), such as wind energy, ocean tidal energy, mechanical vibrations, and human motion, are widely distributed in nature and our surroundings. Effectively harvesting and utilizing these forms of energy has become a promising solution to address the challenges of sustainable energy development. Triboelectric nanogenerators (TENGs), with their unique advantages in harvesting low-frequency and micro-amplitude mechanical energy, have emerged as a key technology in the field of distributed energy systems and have attracted significant academic attention in recent years. However, to expand the application scenarios of TENGs, it is essential to continuously explore methods for improving their output performance. To meet the high-voltage output requirements of electrochemical applications, we developed a specialized electrochemical triboelectric nanogenerator (EC-TENG) by integrating a planetary gear-based mechanical structure with a multilayer parallel TENG configuration. This design significantly reduces the threshold for mechanical energy input while achieving a high-voltage output. By optimizing the rectification circuit, the crest factor was effectively reduced, and the current output was substantially enhanced. The EC-TENG demonstrated a maximum open-circuit voltage (VOC) of 575 V and a short-circuit current (ISC) of 42 μA, sufficient to power commercial electronic devices such as lamps. To enhance the portability and durability of the EC-TENG, a standardized manufacturing and packaging process was implemented, enabling quick replacement of vulnerable components and improving system reliability and service life. The EC-TENG shows great potential for high-voltage electrochemical applications, such as rust removal, and offers a sustainable and efficient solution for energy harvesting in distributed systems. This work provides a new perspective for addressing energy challenges and expanding the application scope of TENG-based technologies.

Graphical abstract: Design of high-performance modular triboelectric nanogenerators for efficient mechanical energy harvesting and electrochemical applications

Supplementary files

Article information

Article type
Paper
Submitted
25 Nov 2024
Accepted
31 Mar 2025
First published
15 Apr 2025

Nanoscale, 2025,17, 12396-12405

Design of high-performance modular triboelectric nanogenerators for efficient mechanical energy harvesting and electrochemical applications

H. Li, M. Li, J. Wang, H. Han, J. Liu, W. Wang and Y. Chen, Nanoscale, 2025, 17, 12396 DOI: 10.1039/D4NR04949G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements