Ti3C2Tx MXene augments osmo-adaptive repression of the inflammatory stress response for improved wound repair

Abstract

Chronic non-healing wounds represent a growing global health challenge that is poorly addressed by current advances in wound care dressings. Hyperosmotic stress linked, for example, to poor glycaemic control, is a known but under-investigated contributor to the chronic wound environment and a known inflammatory stimulus. MXene (Ti3C2Tx) has been considered for smart dressing applications but has not been investigated for use with bioactive agents to directly moderate hyperosmotic stress for improved wound care. In this study, Ti3C2Tx, in combination with osmolyte betaine, was used to investigate hyperosmotic stress-induced effects on wound closure. The effect of these materials was measured using a wound closure scratch assay, and data was used to mathematically model changes in HaCaT human keratocyte migratory rate and velocity. Changes in the upregulation of apoptotic and inflammatory markers were measured, and qualitative changes in phalloidin-labelled actin cytoskeletal structure were observed. A tert-butyl glycine betainate (tBu-GB) polyacrylate microgel loaded Ti3C2Tx dressing was then fabricated and tested for biocompatibility and slow elution of osmolyte over time. Osmotic stress at levels that did not induce cell death reduced the migratory capacity of keratocytes to close the scratch. Migration by osmotically stressed keratocytes was reduced by more than 50% at 24 h and remained at 65% (±5%) at 48 h compared to complete scratch closure at 24 h in the cell only control. This reduction was reversed by a Ti3C2Tx coating, allowing complete scratch closure by 48 h in the osmotically stressed group. Exposure of osmotically stressed cells to betaine increased normalised wound closure in the osmotically stressed keraotycte group at each time point and this was augmented by the presence of a Ti3C2Tx coating. Osmotic stress induced upregulation of inflammatory markers IL-6, IL-1α, IL-1β, CXCL1, and CXCL8 by at least 10-fold. The effect was significantly greater in the presence of bacterial LPS and this was significantly reduced by the presence of Ti3C2Tx alone and in combination with betaine. Sustained and slow release of betaine was demonstrated from a tBu-GB-microgel loaded Ti3C2Tx dressing over 48 h supporting the use of such dressings to improve osmotic stress induced, poor wound closure rates.

Graphical abstract: Ti3C2Tx MXene augments osmo-adaptive repression of the inflammatory stress response for improved wound repair

Supplementary files

Article information

Article type
Paper
Submitted
05 Nov 2024
Accepted
10 Apr 2025
First published
11 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2025, Advance Article

Ti3C2Tx MXene augments osmo-adaptive repression of the inflammatory stress response for improved wound repair

S. Kiziloz, E. J. Ward, D. Hawthorne, A. Sinha, G. Cooksley, D. Sarker, C. Crua, A. Lloyd, C. E. Shuck, Y. Gogotsi and S. Sandeman, Nanoscale, 2025, Advance Article , DOI: 10.1039/D4NR04622F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements