Advancements in DNA-PAINT: applications and challenges in biological imaging and nanoscale metrology
Abstract
Super-Resolution Microscopy (SRM) has revolutionized bioimaging by breaking the diffraction limit of light, enabling visualization of structures at the nanometer scale. DNA-PAINT (Point Accumulation for Imaging in Nanoscale Topography) is a versatile SRM technique that leverages the programmability of DNA hybridization to achieve high-resolution and multiplexed imaging of molecular targets. This review examines recent advancements in DNA-PAINT, including improvements in imaging resolution, acquisition speed, and imager design, which have enhanced its applications in biological imaging and nanoscale metrology. DNA-PAINT’s unique capacities in programming specific interactions have made it indispensable in a range of biological and non-biological settings, from cellular visualization of structure and function to molecular data storage. Here, we highlight recent advancements in DNA-PAINT and its main practical challenges, focusing on how persistent optimization drives innovation. Addressing these challenges continues to drive its expanding role in biological imaging and broader applications across interdisciplinary fields. This review also highlights the interdependence of DNA-PAINT and other techniques that are fundamental to broadening the impact of SRM and shaping the future of biological and biomedical imaging.
- This article is part of the themed collection: Recent Review Articles