Mitochondrial damage and reactive oxygen species production in C. elegans: key factors in CdTe/ZnS quantum dot-Cet probes†
Abstract
Quantum dots (QDs) are nanomaterials renowned for their exceptional optical properties and considerable potential in tumor imaging, drug delivery, and biosensing. These QDs can be functionalized with various ligands, including cetuximab, a monoclonal antibody that specifically targets the epidermal growth factor receptor (EGFR), commonly overexpressed in glioblastoma. Our research team has developed a cetuximab-conjugated CdTe/ZnS QD probe (CdTe/ZnS-Cet) and demonstrated its enhanced glioma imaging capabilities. In order to evaluate the neurotoxicity of the CdTe/ZnS-Cet probe in vivo, we conducted a series of studies using C. elegans as a model to detect the neurotoxicity of the probe. Our observations indicated a concentration-dependent impact of CdTe/ZnS-Cet on nematode physiological changes, with alterations in neurotransmitter levels (dopamine and glutamate) and related gene expression. It shows that these changes are closely associated with ROS-induced oxidative stress and mitochondrial damage. This study not only highlights the pivotal role of mitochondrial damage and ROS production of the CdTe/ZnS-Cet probe in C. elegans, but also provides new insights into the theoretical basis for reducing the neurotoxic effects of the CdTe/ZnS-Cet probe.