Ultrafast Broadband Spectroscopy of Widely Spread Excitonic Features in WSe2 Nanosheets

Abstract

The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe2 is one such extremely promising solar energy material. It has absorption throughout the UV-Vis-NIR region with the existence of four excitonic features, just like MoS2, WS2. However, stability issues and absence of any robust synthetic route limit their practical applications. Herein, we have successfully synthesized atomically thin stable WSe2 nanosheets using very effective colloidal hot injection method and further studied the optical properties of this material using Femtosecond transient absorption spectroscopy. We probed all four excitonic features of WSe2, spread throughout the visible region. The dynamics of the high energy excitons were found to be distinctively slower when compared to their band edge counterparts, adding an additional advantage in optoelectronic applications. We delved further into the factors governing exciton dynamics within WSe2, uncovering strong influence of the electronic band structure. Importantly, our study highlights the importance of all four excitonic features in a 2D TMDC material, which emerge in the system irrespective of the excitation wavelength and influence each other.

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2024
Accepted
14 Jan 2025
First published
16 Jan 2025

Nanoscale, 2025, Accepted Manuscript

Ultrafast Broadband Spectroscopy of Widely Spread Excitonic Features in WSe2 Nanosheets

T. Goswami, H. Bhatt, D. K. Yadav and H. N. Ghosh, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D4NR03874F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements