Issue 1, 2025

Dynamic FeOx/FeWOx nanocomposite memristor for neuromorphic and reservoir computing

Abstract

Memristors are crucial in computing due to their potential for miniaturization, energy efficiency, and rapid switching, making them particularly suited for advanced applications such as neuromorphic computing and in-memory operations. However, these tasks often require different operational modes—volatile or nonvolatile. This study introduces a forming-free Ag/FeOx/FeWOx/Pt nanocomposite memristor capable of both operational modes, achieved through compliance current (CC) adjustment and structural engineering. Volatile switching occurs at low CC levels (<500 μA), transitioning to nonvolatile at higher levels (mA). Operating at extremely low voltages (<0.2 V), this memristor exhibits excellent uniformity, data retention, and multilevel switching, making it highly suitable for high-density data storage. The memristor successfully mimics fundamental biological synapse functions, exhibiting potentiation, depression, and spike-rate dependent plasticity (SRDP). It effectively emulates transitions from short-term memory (STM) to long-term memory (LTM) by varying pulse characteristics. Leveraging its volatile switching and STM features, the memristor proves ideal for reservoir computing (RC), where it can emulate dynamic reservoirs for sequence data classification. A physical RC system, implemented using digits 0 to 9, achieved a recognition rate of 93.4% in off-chip training with a deep neural network (DNN), confirming the memristor's effectiveness. Overall, the dual-mode switching capability of the Ag/FeOx/FeWOx/Pt memristor enhances its potential for AI applications, particularly in temporal and sequential data processing.

Graphical abstract: Dynamic FeOx/FeWOx nanocomposite memristor for neuromorphic and reservoir computing

Supplementary files

Article information

Article type
Paper
Submitted
13 Sep 2024
Accepted
07 Nov 2024
First published
19 Nov 2024

Nanoscale, 2025,17, 361-377

Dynamic FeOx/FeWOx nanocomposite memristor for neuromorphic and reservoir computing

M. Ismail, M. Rasheed, Y. Park, J. Lee, C. Mahata and S. Kim, Nanoscale, 2025, 17, 361 DOI: 10.1039/D4NR03762F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements