Natural products in antiparasitic drug discovery: advances, opportunities and challenges
Abstract
Covering: up to 2024.
Parasites infect hundreds of millions of people, result in significant disability rates and mortality and lead to devastating social and economic consequences, especially in developing countries and regions. Traditional medicines have been used for centuries to treat parasitic diseases. Some natural products (NPs) and their derivatives have been derived from these medicines and applied in clinical settings, attracting the attention of the scientific community throughout history. With the development and application of revolutionized technologies over the past few years, more promising compounds have been found from natural resources and provided new possibilities for the development of novel antiparasitic drugs. In this review, we aimed to discuss the strategies used for developing drugs from natural resources and mainly describe the causative pathogens, epidemiology and current treatment of parasitic diseases. Promising NPs and their derivatives are listed, and their effectiveness, potential mechanism and structural optimization are described. Subsequently, the advantages and limitations of the drug development process and the role of technologies in this process are discussed. A prospective analysis of research on and development of antiparasitic drugs based on NPs is presented. The high attrition rates, accessibility, sustainable supply, IP constraints and other problems still hinder the development of NPs; however, the therapeutic significance and broad clinical utilization of approved natural product-derived drugs, exemplified by quinine, artemisinin, and ivermectin in treating parasitic diseases, underscore that natural products remain a highly promising reservoir of chemical agents. Their exceptional structural diversity and marked bioactivities continue to stimulate scientific interest in novel antiparasitic drug discovery. In combination with the recent development and application of revolutionized technologies, NPs will provide a stronger basis for drug discovery and will continue to provide major contributions to human and veterinary health.