Issue 3, 2025

BPPO-based anion exchange membranes for acid recovery via diffusion dialysis

Abstract

Diffusion dialysis (DD) with anion exchange membranes (AEMs) as the core component is an ideal technology for acid recovery from acidic wastewater. Herein, a series of TEA–BPPO AEMs were prepared from triethanolamine (TEA) and brominated polyphenylene ether (BPPO) using the solution casting method. The structures of the prepared membranes were characterized and analyzed through nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). In addition, the properties of the membranes, such as ion exchange capacity (IEC), linear swelling rate (LSR), water uptake (WU), chemical stability, thermal stability and mechanical stability, were explored. In DD experiments, the optimal AEM (i.e., TEA–BPPO–M80) applied to simulate acid recovery from a mixed HCl (1 mol L−1)/FeCl2 (0.2 mol L−1) solution exhibited an acid dialysis coefficient (UH+) of 0.0629 m h−1 and separation factor (S) of 97.78, which were significantly better than those of the commercial membrane DF-120. In addition, the TEA–BPPO–M80 AEM exhibited excellent thermal stability and acid resistance. In summary, the prepared membranes possess great potential for application in DD acid recovery.

Graphical abstract: BPPO-based anion exchange membranes for acid recovery via diffusion dialysis

Article information

Article type
Paper
Submitted
28 Oct 2024
Accepted
02 Dec 2024
First published
17 Dec 2024

New J. Chem., 2025,49, 845-854

BPPO-based anion exchange membranes for acid recovery via diffusion dialysis

Y. Chen, S. Fan, C. Peng, B. Song, M. Qin, Y. Wang, Y. Huang, S. Li and L. Zhang, New J. Chem., 2025, 49, 845 DOI: 10.1039/D4NJ04677C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements