Multilevel storage and linear optoelectronic response in mixed-dimensional photomemories

Abstract

The rapid evolution of artificial intelligence (AI) computing demands innovative memory technologies that integrate high-speed processing with energy-efficient data storage. Here, we report a mixed-dimensional photomemory device based on a CsPbBr3/Al2O3/MoS2 architecture, leveraging perovskite quantum dots (PQDs) as a photoactive floating-gate layer, a tunable Al2O3 dielectric, and a 2D MoS2 channel. Optical and electrical characterization studies, including steady-state and time-resolved photoluminescence (PL), Kelvin probe force microscopy (KPFM), and current–voltage measurements, reveal the interplay of dielectric thickness and interfacial effects in governing charge transfer efficiency. By optimizing the Al2O3 thickness to 5.5 nm, we achieve precise control over charge transfer dynamics, enabling an optimal charge transfer rate with minimal optical energy (∼sub-pJ) to store a single positive charge in the PQDs. The device exhibits exceptional optoelectronic performance, including a nearly linear correlation between incident photon number and average photocurrent (Iph(avg)) over two orders of magnitude, multilevel storage capability, and a memory window with a high on/off ratio. These findings establish a robust platform for next-generation perovskite-based photomemories, offering insights into energy-efficient, high-performance optoelectronic systems for advanced AI chip applications.

Graphical abstract: Multilevel storage and linear optoelectronic response in mixed-dimensional photomemories

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
04 Jun 2025
Accepted
03 Sep 2025
First published
03 Sep 2025

Nanoscale Horiz., 2025, Advance Article

Multilevel storage and linear optoelectronic response in mixed-dimensional photomemories

C. Tsai, D. Jhan, C. Wu, M. Lu and M. Lu, Nanoscale Horiz., 2025, Advance Article , DOI: 10.1039/D5NH00397K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements