Optoelectronic synapses realized on large-scale continuous MoSe2 with Te doping induced tunable memory functions

Abstract

Synaptic devices with integrated sensing–computing–storage functions are emerging as promising technological solutions to break the memory wall in the von Neuman architecture computing system. 2D semiconductors are ideal candidate materials for artificial synapses due to their superior electronic and optoelectronic properties. In this work, we report robust optoelectronic synapses realized on wafer-scale continuous MoSe2 with Te-doping-induced tunable memory functions. A unique defect engineering strategy of substitutional doping of Te has been adopted to induce Se vacancies in chemical vapour deposition grown MoSe2 films. These vacancies introduce defect states as deep trap levels in the band gap, enabling efficient charge trapping and significantly prolonging the decaying time. The presence of Te doping and Se vacancies was confirmed by PL, Raman, and XPS characterization. Ultra-high vacuum stencil lithography technique has been adopted for the fabrication of arrayed optoelectronic devices that exhibit prominent excitatory postsynaptic currents with the paired-pulse facilitation up to 197% under ultraviolet illumination. Therefore, essential synaptic behaviors like the spike-number-, spike-rate-, and spike-intensity-dependent plasticity have been demonstrated, along with the in-sensor computation application of hardware image sharpening capability. This work offers a new method of vacancy engineering in large-scale 2D semiconductors for future application in integrated neuromorphic devices.

Graphical abstract: Optoelectronic synapses realized on large-scale continuous MoSe2 with Te doping induced tunable memory functions

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
05 Feb 2025
Accepted
28 Apr 2025
First published
29 Apr 2025

Nanoscale Horiz., 2025, Advance Article

Optoelectronic synapses realized on large-scale continuous MoSe2 with Te doping induced tunable memory functions

Y. Hu, Y. Lin, X. Zhang, Y. Zhao, L. Li, Y. Zhang, H. Lei and Y. Pan, Nanoscale Horiz., 2025, Advance Article , DOI: 10.1039/D5NH00062A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements