Advances in nanomechanical property mapping by atomic force microscopy
Abstract
AFM-based mechanical property measurements are widely used in energy storage, polymer science, mechanobiology or nanomedicine. Mechanical properties are determined by expressing the experimental force in terms of a contact mechanics model. A nanomechanical map is generated by representing one or more mechanical parameters as a function of the tip's spatial coordinates. Force spectroscopy modes might be separated into two categories, adhesion and indentation. Here we describe the principles of AFM-based indentation modes to generate spatially resolved maps of the mechanical properties at the nanoscale. The review provides an update on the progress in nanomechanical mapping since 2019. The focus is on quantitative accuracy, spatial resolution, high-speed data acquisition, machine learning and viscoelastic property mapping. Two advanced applications which emerged from AFM-based indentation modes, nanomechanical tomography and volume imaging of solid–liquid interfaces, are also described.