Hexagonal ABX3 nanocrystals: rod-shaped BaNbS3 and BaTaS3; BaTiSe3, BaZrSe3, and other selenide derivatives for optoelectronic applications

Abstract

Chalcogenide perovskites have increasingly garnered attention in recent years for various optoelectronic applications. While distorted perovskites such as BaZrS3 are primarily being explored for photovoltaic applications, hexagonal ABS3 compounds such as BaTiS3 have been proposed for optical devices and thermoelectrics due to their intriguing properties arising from their quasi-1D structure, which imparts anisotropy in properties. However, other members of the hexagonal family remain largely unexplored, likely due to their harsh synthesis conditions. In this report, we synthesize nanocrystals of relatively unexplored members of the hexagonal ABX3 chalcogenides family, which also possess a similar rod-like morphology and could be useful for polarized photodetection applications. Specifically, we modified our previously reported sulfide perovskite nanoparticle synthesis route to produce BaNbS3 and BaTaS3 nanocrystals. Furthermore, we explored selenium and selenourea as precursors to synthesize selenide hexagonal nanocrystals such as BaTiSe3 and BaZrSe3, as well as other selenide analogues like Ba3Nb2Se9 and Ba3Ta2Se9. This marks the first report of nanocrystal synthesis for the BaMSe3 family, where M is an early transition metal.

Graphical abstract: Hexagonal ABX3 nanocrystals: rod-shaped BaNbS3 and BaTaS3; BaTiSe3, BaZrSe3, and other selenide derivatives for optoelectronic applications

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2025
Accepted
09 Sep 2025
First published
16 Sep 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025, Advance Article

Hexagonal ABX3 nanocrystals: rod-shaped BaNbS3 and BaTaS3; BaTiSe3, BaZrSe3, and other selenide derivatives for optoelectronic applications

S. Agarwal, S. Rodriguez Perilla, M. Rios Marques, D. C. Hayes, K. C. Vincent and R. Agrawal, Nanoscale Adv., 2025, Advance Article , DOI: 10.1039/D5NA00628G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements